منتديات بابل للرياضيات
اهلا وسهلا بالزائر الكريم
في منتديات بابل المتخصصة بالرياضيات المنهجية واللامنهجية في العراق والدول العربية
نرحب بكم معنا في المنتديات
شكرا لكم

المتتابعات

استعرض الموضوع السابق استعرض الموضوع التالي اذهب الى الأسفل

المتتابعات

مُساهمة من طرف ???? ??? في الخميس مايو 02, 2013 9:17 pm

المتتابعة هي : دالة د مجالها مجموعة جزئية من ط ومداها مجموعة جزئية من ح .
وتسمى : د(ن)=أن بالحد النوني للمتتابعة ، ن تنتمي لـ ط ، وعناصرها تسمى حدود المتتابعة .
وهناك متتابعات منتهية : د {1، 2،3، ...،م} ← ح . ومتتابعات غير منتهية : د : ط ← ح .
المتتابعة الحسابية
نقول أن {حن } متتابعة حسابية إذا وجد عدد ثابت د بحيث د = حن +1 - حن ، لجميع قيم ن وتسمى د أساس المتتابعة .
ملاحظات :
1- الحد النوني للمتتابعة الحسابية هو : حن = أ + (ن - 1) د ، أ هو الحد الأول ، د هو الأساس .
2- الأوساط الحسابية بين العددين أ ، ب هي حدود المتتابعة التي حدها الأول أ وحدها الأخير ب .
أمثلة :
مثال(1) : هل المتتابعة : {حن } ={15،11،7،3،.....} حسابية أم لا ولماذا ؟ .
جواب(1) : المتتابعة حسابية لأن حن +1 - حن = 4 ، لجميع قيم ن .
مثال(2) : أوجد الحد الثالث عشر (ح13) للمتتابعة الحسابية : {1،-3،-7،-11،....} .
جواب(2) : أساس المتتابعة (د) = -3-1 = -4 ، الحد الأول (أ) =1 ، إذن :
ح13 = 1 + (13 - 1) × -4 = 1 + (- 48) = - 47 .
مثال(3) : إدخل خمسة أوساط حسابية بين العددين -13 ، 245 ؟ .
جواب(3) : أ = -13 ، حن = 245 ، ن = 7 ، د = ؟
نوجد أساس المتتابعة (د) من القانون كمايلي :
حن = أ + (ن - 1)د
245 = -13 + (7 - 1) × د ، إذن د = 43 ، إذن الأوساط هي : 30 ، 73 ، 116 ، 159 ، 202 .
تمرين:
أوجد عدد الحدود المحصورة بين 13 ، 100 والتي تقبل القسمة على 6 ؟ ( ن = 14 حدا ) .
إرشاد : الحد الأخير = 96 .
________________________________________
المتتابعة الهندسية

عزيزي الطالب لاحظ المتتابعات التالية واكتشف القاعدة :
{16،8،4،2،1،.....} ، {5،5،5،.....} ، {27،-3،9،-1،....}
نلاحظ في كل المتتابعات السابقة أن كل حد قسمة سابقه يساوي مقدار ثابت ، وهذا النوع من المتتابعات نسميه بالمتتابعات الهندسية .
المتتابعة الهندسية:
نقول أن {حن } متتابعة هندسية إذا وجد عدد ثابت ر بحيث ر = حن +1 ÷ حن ، لجميع قيم ن وتسمى ر أساس المتابعة .
ملاحظات :
1-الحد النوني للمتتابعة الهندسية هو : حن = أ رن - 1 ، حيث أ هو الحد الأول ، ر هو أساس المتتابعة .
2- الأوساط الهندسية بين العددين أ ، ب هي حدود المتتابعة التي حدها الأول أ وحدها الأخير ب .
3- إذا كانت الأعداد أ ، ب ، جـ في تتابع هندسي فإن ب يسمى الوسط الهندسي حيث :
أ/ب = ب/جـ ← ب = زائد أو ناقص الجذر التربيعي لـ أ×جـ .
أمثلة :
مثال(1) : قرر فيما إذا كانت المتتابعة التالية هندسية أم لا : 3 ، 6 ، 12 ،..... ؟
جواب(1) : المتتابعة هندسية لأن حن +1 ÷ حن = 2 ، لجميع قيم ن .
مثال(2) : أوجد الحد العاشر في المتتابعة : 2/1،-2،1،.... ؟
جواب(2) : المتتابعة هندسية ، أ = 2/1 ، ر = -1 ÷ 2/1 = -2 ، إذن :
ح10 = 2/1 × -92 = 2/1 × ( -512) = 256
مثال(3) : أوجد الوسط الهندسي للعددين 16 ، 9 ؟ .
جواب(3) : الوسط الهندسي للعددين = زائد أو ناقص جذر 144 = زائد أو ناقص 12 .
مثال(4) : إدخل أربعة أوساط هندسية بين العددين 486 ، 2 ؟
جواب(4) : أ= 486 ، ح6 = 2 ، ن = 6 ، بقي أن نوجد الأساس ر كما يلي :
حن = أ رن - 1
2 =486 × ر6 - 1 ← ر5 = 486/2 ← ر5 = 243/1 ، لاحظ أن 243 = 53
ر5 = (3/1)5 ← ر = 3/1
468 × 3/1 = 162 ، 162 × 3/1 =54 ، وهكذا .
إذن الأوساط الهندسية الأربعة هي : 162 ، 54 ، 18 ، 6 . (تذكر أن ر = حن +1 ÷ حن ) .
ملاحظة : إذا كان عدد الأوساط المطلوبة فردي ، كأن يقول إدخل خمسة أوساط... ، فإن الأساس ر الذي توصلت إليه يكون زائد أو ناقص ، بمعنى أن يكون خمسة أوساط موجبة وأخرى سالبة .
مثال
*** إدخل خمسة أوساط هندسية بين العددين 81 ، 9/1 ؟
جــ : أ= 81 ، ح7 = 9/1 ، ن = 7 ،
حن = أ رن - 1
9/1 =81 × ر7 - 1 ← ر6 = 9/1 ÷ 81 ← ر6 = 729/1 ، لاحظ أن 729 = 63
ر6 = (3/1)6 ← ر =+ - 3/1
عندما ر= + 3/1 فإن الأوساط هي : 27 ، 9 ، 3 ، 1 ، 3/1
عندما ر= - 3/1 فإن الأوساط هي : -27 ، 9 ، -3 ، 1 ، -3/1
تمرين :
1- إدخل وسطين هندسيين بين العددين 9 ، -243 ؟ ( الحل : -27 ، 81) .
2- أوجد المتتابعة الهندسية التي يزيد حدها الثالث عن الثاني بمقدار 6 ، ويزيد الحد الرابع عن الثالث بمقدار 4 ؟ . ( -27 ، -18 ، -12 ، -8 ، ......) .


[i]

???? ???
زائر


الرجوع الى أعلى الصفحة اذهب الى الأسفل

استعرض الموضوع السابق استعرض الموضوع التالي الرجوع الى أعلى الصفحة


 
صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى